
IN THIS APPENDIX

• What Is C++?

• The Minimum You Need to
Know About C++

• New Types, Keywords, and
Conventions

• Memory Management

• Stream I/O

• Classes

• The Scope Resolution
Operator

• Function and Operator
Overloading

• Basic Templates

• Introduction to Exception
Handling

APPENDIX D

C++ Primer

First, let’s get the pronunciation of primer out of the way. For
many years, I pronounced primer as though it rhymed with
timer, but the truth is, that’s wrong. My friend Mitch Waite
(the founder of Waite Group) has made a pretty good living
off the word primer, but he told me one day that an English
author of his from the U.K. said that he was pronouncing the
word wrong. The correct pronunciation of primer rhymes with
trimmer, as in “prim and proper.” Primer the way we were
pronouncing it meant the stuff you put on before you paint,
or the first stage in an explosive process. In any case, I don’t
know if I will ever say it right—”prime-er” just sounds better!

TIP

If you’re a C++ programmer, you might be asking “Why does
André always use C?” The answer is simple—C is easier to
understand, and that’s all there is to it. C++ programmers obvi-
ously know C because it’s a subset, and most game program-
mers learn C before C++.

What Is C++?
C++ is simply C upgraded with object-oriented (OO) technol-
ogy. It’s really nothing more than a superset of C. C++ has
the following major upgrades:

• Classes

• Inheritance

• Polymorphism

0672318350 AppD 5/14/03 10:00 AM Page 1625

1626 APPENDIX D C++ Primer

Let’s take a quick look at each. Classes are simply a way of combining both data and func-
tions. Normally when you program in C you have data structures to hold data, and func-
tions that operate on the data, as shown in Part A of Figure D.1. However, with C++, both
data and the functions to operate on the data are contained within a class, as shown in
Part B of Figure D.1. Why is this good? Well, because you can think of a class as an object
that has properties and can perform actions. It’s just a tighter and more abstract way of
thinking.

x

y

z

Add (. . .)

Sub (. . .)

Length (. . .)

Vector struct

C structures hold data

x

y

z

Add (. . .)

Sub (. . .)

Length (. . .)

Data
part

Member
functions

Vector class

C++ classes hold data & functions

External functions operate on data

A. In C, the functions that operate on
 structures are external to the structure.

B. In C++, both data & functions are
 defined in the class.

FIGURE D.1 The structure of a class.

The next cool thing about C++ is inheritance. After you create classes, they give you the
abstract ability to create relationships between class objects and base one object or class
upon another. It’s done all the time in real life, so why not in software? For example, you
might have a class called person that contains data about the person and maybe some
class methods to operate on the data (don’t worry about that for now). The point is, a
person is fairly generic. But the power of inheritance comes into play when you want to
create two different types of people: a software engineer and a hardware engineer, for
example. Let’s call them sengineer and hengineer.

0672318350 AppD 5/14/03 10:00 AM Page 1626

FIGURE D.2 Class inheritance.

Figure D.2 shows the relationship between person, sengineer, and hengineer. See how the
two new classes are based on person? Both sengineer and hengineer are persons, but with
extra data. Thus, you inherit the properties of a person, but add new ones to create sengi-
neer and hengineer. This is the basis of inheritance—you build up more complex objects
from pre-existing ones. In addition, there is multiple inheritance, which enables you to
build a new object as a set of subclasses.

The third and last big deal about C++ and OO programming is polymorphism, which means
“many forms.” In the context of C++, polymorphism means that a function or operator
means different things depending on the situation. For example, you know that the
expression (a + b) in straight C means to add a and b together. You also know that a and
b must be built in types like int, float, char, and short. In C, you can’t define a new type
and then say (a + b). In C++, you can! Therefore, you can overload operators like +, -, *,
/, [], and so on, and make them do different things, depending on the data.

Furthermore, you can overload functions. For example, suppose you write a function
Compute() like this:

int Compute (float x, float y)

{

// code

}

This function takes two floats, but if you send it integers, they’re simply converted to
floats and then passed to the function. Hence, you lose data. However, in C++, you can do
this:

What Is C++? 1627
D

Age
Height
Weight

Person

Degree
Salary
Specialty

H engineer
“is a person”

S engineer
“is a person”

Degree
Salary
Operating system

0672318350 AppD 5/14/03 10:00 AM Page 1627

int Compute (float x, float y)

{

// code

}

int Compute (int x, int y)

{

// code

}

Even though the functions have the same names, they take different types. The compiler
thinks they are completely different functions, so a call with integers calls the second
function, while a call with floats calls the first. If you call the function with a float and an
integer, things get more complex. Promotion rules then come into play, and the compiler
decides which one to call using these rules.

That’s really all there is to C++. Of course, there is some added syntax and lots of rules
about all this stuff, but for the most part, all of it has to do with implementing these three
new concepts—easy, huh?

The Minimum You Need to Know About C++
C++ is an extremely complex language, and using the new technologies too much, too fast
can create totally unreliable programs with all kinds of memory leaks, performance issues,
and so on. The problem with C++ is that it is a language of black boxes. There are a
number of processes that go on behind the scenes, and you might never find bugs that
you have created because of this. However, if you start off using just a little C++ here and
there, and then add new features to your repertoire as you need them, you will be fine.

The only reason that I even wrote this appendix on C++ is that DirectX is based on it.
However, most of the C++ is encapsulated in wrappers and COM interfaces that you
communicate with via function pointer calls—that is, calls of the form interface->func-
tion(). If you have gotten this far in the book, you must have just dealt with that weird
syntax. Moreover, the chapter on COM (Component Object Model) should have eased
your nerves on the subject. In any event, we are going to cover just the basics, so you can
better understand C++, talk about it with your friends, and have a good working knowl-
edge of what’s available.

We are going to cover some new types and conventions, memory management, stream
I/O, basic classes, function and operator overloading, and that’s about it—but believe me,
that’s enough! So, let’s get started…

New Types, Keywords, and Conventions
Let’s start off with something simple—the new comment operator (//). This has become
part of C, so you might already use it, but the // operator is a single line comment in C++:

APPENDIX D C++ Primer1628

0672318350 AppD 5/14/03 10:00 AM Page 1628

Comments
// this is a comment

You can still use the old comment style, /* */, if you like:

/* a C style multi line comment

every thing in here is a comment

*/

Constants
To create a constant in standard C, you can do one of two things:

#define PI 3.14

or

float PI = 3.14;

The problem with the first method is that PI isn’t a real variable with a type. It’s only a
symbol that the pre-processor uses to do a text replacement, so it has no type, no size, and
so on. The problem with the second type definition is that it is writable. Thus, C++ has a
new type called const, which is like a read-only variable:

const float PI = 3.14;

You can use PI anywhere you want—its type is float, and its size is sizeof(float)—but
you can’t overwrite it. This is really a much better way to make constants.

Referential Variables
In C, there will be many times when you want to change the value of a variable in a func-
tion, so you pass a pointer, like this:

int counter = 0;

void foo(int *x)

{

(*x)++;

}

And if you make a call to foo(&counter), counter will be equal to 1 after the call. Hence,
the function changes the value of the sent variable. This is so common a practice that C++
has a new type of variable to help make this easier to do. It’s called a reference variable, and
it’s denoted by the address operator &.

New Types, Keywords, and Conventions 1629
D

0672318350 AppD 5/14/03 10:00 AM Page 1629

int counter = 0;

void foo(int &x)

{

x++;

}

Interesting, huh? But how do we call the function? Like this:

foo(counter);

Notice that we don’t need to put the & in front of counter anymore. What happens is that
x becomes an alias for whichever variable is sent. Therefore, counter is x, and no & is
needed during the call.

You can also create references outside of functions like this:

int x;

int &x_alias = x;

x_alias is an alias to x. Wherever and however you use x, you can use x_alias—they are
identical. I don’t see much need for this, though.

Creating Variables On the Fly
One of the coolest new features of C++ is the capability to create variables within code
blocks, and not just at the global or function level. For example, here’s how you might
write a loop in C:

void Scan(void)

{

int index;

// lots of code here…

// finally our loop

for (index = 0; index < 10; index++)

Load_Data(index);

// more code here…

} // end Scan

APPENDIX D C++ Primer1630

0672318350 AppD 5/14/03 10:00 AM Page 1630

There is nothing wrong with the code. However, index is only used as a loop index in one
code segment. The designers of C++ saw this as non-robust, and felt that variables should
be defined closer to where they are used. Moreover, a variable that is used in one code
block shouldn’t be visible to other code blocks. For example, if you have a set of code
blocks like this:

void Scope(void)

{

int x = 1, y = 2; // global scope

printf(“\nBefore Block A: Global Scope x=%d, y=%d”,x,y);

{ // Block A

int x = 3, y = 4;

printf(“\nIn Block A: x=%d, y=%d”,x,y);

} // end Block A

printf(“\nAfter Block A: Global Scope x=%d, y=%d”,x,y);

{ // Block B

int x = 5, y = 6;

printf(“\nIn Block B: x=%d, y=%d”,x,y);

} // end Block B

printf(“\nAfter Block B: Global Scope x=%d, y=%d”,x,y);

} // end Scope

There are three different versions of x and y. The first x and y are globally defined.
However, after code block A is entered, they go out of scope in light of the local x and y
that come into scope. Then, when code block A exits, the old x and y come back into
scope (with their old values), and the same process occurs for block B. With block-level
scoping, you can better localize variables and their use. Moreover, you don’t have to keep
thinking of new variable names. You can continue to use x, y, and so on without worrying
that the new variables will corrupt globals with the same name.

The really cool thing about this new variable scoping is that you can create a variable on
the fly in code. For example, take a look at the same for() loop based on index, but
using C++:

// finally our loop

for (int index = 0; index < 10; index++)

Load_Data(index);

Isn’t that the coolest? I defined index right as I used it, rather than at the top of the func-
tion. Just don’t get too carried away with it.

New Types, Keywords, and Conventions 1631
D

0672318350 AppD 5/14/03 10:00 AM Page 1631

Memory Management
C++ has a new memory management system based on the operators new and delete. They
are equivalent to malloc() and free() for the most part, but are much smarter, because
they take into consideration the type of data being requested/deleted. Here’s an example:

To allocate 1000 ints from the heap in C:

int *x = (int*)malloc(1000*sizeof(int));

What a mess! Here’s the same thing in C++:

int *x = new int[1000];

Much nicer, huh? You see, new already knows to send back a pointer to int—that is, an
int*—so we don’t have to cast it. Now, to release the memory in C, you would do this:

free(x);

In C++, you would do this:

delete x;

About the same, but the cool part is the new operator. Also, use either C or C++ to allocate
memory. Don’t mix calls to new with calls to free() and malloc() with delete.

Stream I/O
I love printf(). Nothing is more pure than

printf(“\nGive me some sugar baby.”);

The only problem with printf() is all the format specifiers like %d, %x, %u, and so forth.
They’re hard to remember. In addition, scanf() is even worse, because you can really mess
up if you forget to use the address of a variable for storage. For example:

int x;

scanf(“%d”,x);

This is incorrect! We need the address of x or &x. Therefore, the correct syntax is

scanf(“%d”,&x);

I’m sure you have made this mistake. The only time you don’t have to use the address
operator is when you’re working with strings, because the name is the address. In any
case, this is reason why the new IOSTREAM class was created in C++. It knows the types of

APPENDIX D C++ Primer1632

0672318350 AppD 5/14/03 10:00 AM Page 1632

the variables, so you don’t need to specify them anymore. The IOSTREAM class functions
are defined in IOSTREAM.H, so you need to include it in your C++ programs to use it. Once
you do, you will have access to the streams cin, cout, cerr, and cprn, as shown in
Table D.1.

TABLE D.1 C++ I/O Streams

Stream Name Device C Name Meaning

cin Keyboard stdin Standard Input

cout Screen stdout Standard Output

cerr Screen stderr Standard Error

cprn Printer stdprn Printer

Using the I/O streams is a bit weird, because they’re based on the overloaded operators <<
and >>. These normally signify bit-shifting in C, but in the context of the I/O streams,
they’re used to send and receive data. Here are some examples of using the standard
output:

int i;

float f;

char c;

char string[80];

// in C

printf(“\nHello world!”);

// in C++

cout << “\nHello world!”;

// in C

printf(“%d”, i);

// in C++

cout << i;

// in C

printf(“%d,%f,%c,%s”, i, f, c, string);

// in C++

cout << i << “,” << f << “,” << c << “,” << string;

Stream I/O 1633
D

0672318350 AppD 5/14/03 10:00 AM Page 1633

Isn’t that cool? You don’t need any type specifier: cout already knows the type and does it
for you. The only thing really weird about the syntax is the way C++ allows you to
concatenate the << operator to the end of each operation. The reason for this is that each
operation returns a stream itself, so you can add << forever. The only downside to using
streams for simple printing is the way you have to separate variables and string constants,
like the “,” that separates each variable. However, you can put the << on each line if you
want, like this:

cout << i

<< “,”

<< f

<< “,”

<< c

<< “,”

<< string;

Remember that in both C and C++, white space is discarded, so the above coding is legal.

The input stream works in much the same way, but with the >> operator instead. Here are
some examples:

int i;

float f;

char c;

char string[80];

// in C

printf(“\nWhat is your age?”);

scanf(“%d”,&i);

// in C++

cout << “\nWhat is your age?”;

cin >> i;

// in C

printf(“\nWhat is your name and grade?”);

scanf(“%s %c”, string, &c);

// in C++

cout << “\nWhat is your name and grade?”;

cin >> string >> c;

A little nicer than C, isn’t it. Of course, the IOSTREAM system has a million other functions
and neat things that you can do with it, so check it out.

APPENDIX D C++ Primer1634

0672318350 AppD 5/14/03 10:00 AM Page 1634

Classes
Classes in C++ are the most important addition to the language, and for the most part
give C++ its OO zeal. As I discussed before, a class is simply a container of both data and
methods (often called member functions) that operate on that data.

The New Struct in Town
Let’s begin learning classes by starting with standard structures, but with a twist. In C, you
defined a structure like this:

struct Point

{

int x,y;

};

You can then create an instance of a structure with this:

struct Point p1;

This creates an instance or object of the structure Point and names it p1. In C++, you
don’t need to use the struct keyword anymore to create an instance:

Point p1;

This creates an instance of the structure Point named p1. The reason for this is that C
programmers have been creating types so they don’t have to type struct anymore, like
this:

typedef struct Point_tag

{

int x,y;

} Point;

Thus, the syntax

Point p1;

Classes are similar to the new structures in that you don’t have to create a type—the defin-
itions themselves are the types.

Just a Simple Class
A class in C++ is defined with the keyword class. Here’s an example:

Classes 1635
D

0672318350 AppD 5/14/03 10:00 AM Page 1635

class Point

{

public:

int x,y;

};

Point p1;

This is almost identical to the struct version of Point. In fact, both versions of p1 work in
the exact same way. For example, to access data, you just use the normal syntax:

p1.x = 5;

p1.y = 6;

And of course, pointers work the same. So, if you define something like this:

Point *p1;

then you would have to allocate memory for it first with malloc() or new:

p1 = new Point;

Then you could assign values to x and y like this:

p1->x = 5;

p1->y = 6;

The bottom line is that for the most part, classes and structures are identical when access-
ing public data elements. The key term is public—what does this mean? If you noticed in
my previous example of the Point class, defined as

class Point

{

public:

int x,y;

};

there is a keyword public: at the top of the definition before any declarations. This
defines the visibility of the variables (and member functions). There are a number of visi-
bility options, but usually only two are used: public and private.

Public Versus Private
If you place the keyword public at the top of all your class definitions and only have data
in the classes, you have nothing more than a standard structure. That is, structures are

APPENDIX D C++ Primer1636

0672318350 AppD 5/14/03 10:00 AM Page 1636

classes with public visibility. Public visibility means that anyone can look at the class data
elements. As for code in the main, other functions, and member functions, the data is not
hidden or encapsulated. Private visibility, on the other hand, gives you the capability to
hide data that you don’t want other functions that aren’t part of the class to alter. For
example, take a look at this class:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

private:

int reference_count; // this is hidden

};

Vector3D has two different parts to it: the public data area and the private data area. The
public data area has three fields that can be changed by anyone: x, y, and z. On the other
hand, there is a hidden field in the private section called reference_count. This field is
hidden to everything except the member functions of the class (there aren’t any yet).
Thus, if you were to write some code like this

Vector3D v;

v.reference_count = 1; // illegal!

the compiler would give you an error! So the question is, what good are private variables if
you can’t access them? Well, they’re great for writing something like a black box class
when you don’t want or need the user to alter internal working variables. In that example,
private is the way to go. However, to access the private members, you need to add member
functions or methods to the class—this is where we jump off the deep end…

Class Member Functions (Methods)
A member function or method (depending on who you’re talking to) is basically a func-
tion within a class that only works with the class. Here’s an example:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void)

{

Classes 1637
D

0672318350 AppD 5/14/03 10:00 AM Page 1637

return(sqrt(x*x + y*y + z*z);

} // end length

private:

int reference_count; // this is hidden

};

I have highlighted the member function length(). I have defined a function right in the
class! Weird, huh? Let’s see how to use it:

Vector3D v; // create a vector

// set the values

v.x = 1;

v.y = 2;

v.z = 3;

// here’s the cool part

printf(“\nlength = %d”,v.length());

You call a class member function just like you access an element. And if v were a pointer,
you would do this:

v->length();

Now, you might be saying, “I have about 100 functions that are going to have to access
the class data—I can’t possibly put them all in the class!” Well, you can if you want, but I
agree that it would get messy. However, you can define class members function outside
the class definition. We’ll get to that in a minute. Right now, I want to add another
member function to show how you might access that private data member
reference_count:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void)

{

return(sqrt(x*x + y*y + z*z);

} // end length

APPENDIX D C++ Primer1638

0672318350 AppD 5/14/03 10:00 AM Page 1638

// data access member function

void addref(void)

{

// this function increments the reference count

reference_count++;

} // end addref

private:

int reference_count; // this is hidden

};

You talk to reference_count via the member function addref(). This may seem odd, but
if you think about it, it’s a good thing. Now the user can’t do anything stupid to the data
member. It always goes through your access function, which in this case only allows the
caller to increment the reference_count, as in

v.addref();

The caller can’t change the reference count, multiply it by a number, and so on, because
reference_count is private. Only member functions of the class can access it—this is data
hiding and encapsulation.

At this point, I think you’re seeing the power of classes. You can fill them with data-like
structure, add functions within the classes that operate on the data, and hide data—pretty
cool! But it gets even better!

Constructors and Destructors
If you have been programming C for over a week, there’s something that I’m sure you
have had to do about a million times—initialize a structure. For example, say that you
create a structure Person:

struct Person

{

int age;

char *address;

int salary;

};

Person people[1000];

Classes 1639
D

0672318350 AppD 5/14/03 10:00 AM Page 1639

Now you need to initialize 1,000 people structures. Maybe all you want to do is this:

for (int index = 0; index < 1000; index++)

{

people[index].age = 18;

people[index].address = NULL;

people[index].salary = 35000;

} // end for index

But what if you forget to initialize the data and then just use the structures? Well, you
might wind up seeing your old friend General Protection Fault. You might also see it if
you forget to initialize your data structures. Similarly, what if during the run of your
program you allocate memory, and point the address field of a Person to the memory, like
this?

people[20].address = malloc(1000);

Then you forget about it, and do this:

people[20].address = malloc(4000);

Oops! You just lost a thousand bytes of memory in never-never land. What you needed to
do before allocating more memory was release the old memory with a call to free():

free(people[20].address);

I think you have probably done this, too. C++ solves these housekeeping problems by
giving you two new automatic functions that are called when you create a class: construc-
tors and destructors.

Constructors are called when a class object is instantiated. For example, when this code is
executed:

Vector3D v;

the default constructor is called, which doesn’t do anything. Similarly, when v goes out of
scope—that is, when the function v is defined in terminates, or if v is global when the
program terminates—the default destructor is called, which also doesn’t do anything. To
see any action, we have to write a constructor and destructor. You don’t have to if you
don’t want to, and you can define one or both.

Writing a Constructor
Let’s use the Person structure converted to a class as an example:

APPENDIX D C++ Primer1640

0672318350 AppD 5/14/03 10:00 AM Page 1640

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even a void

Person()

{

age = 0;

address = NULL;

salary = 35000;

} // end Person

};

Notice that the constructor has the same name as the class; in this case, Person. This is
not a coincidence—it’s a rule! Also, notice that the constructor returns nothing. This is
also a must. However, the constructor can take parameters. In this case, there are no para-
meters. However, you can have constructors with parameters—in fact, you can have an
infinite number of different constructors, each with a different calling list. This is how you
can create various types of Persons with different calls. Anyway, to create a Person and
have it automatically initialized, you just do this:

Person person1;

The constructor will be called automatically, and the following assignments will occur:

person1.age = 0;

person1.address = NULL;

person1.salary = 35000;

Cool, huh? Now, the power of the constructor comes into play when you code something
like this:

Person people[1000];

The constructor will be called for every single instance of Person, and all 1,000 of them
will be initialized without a single line of code on your part!

Now let’s get a little more advanced. Remember how I told you that functions can be over-
loaded? Well, you can overload constructors, too. Suppose you want a constructor for

Classes 1641
D

0672318350 AppD 5/14/03 10:00 AM Page 1641

which you can set the age, address, and salary of a Person during its creation. You could
do this:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void

Person()

{

age = 0; address = NULL; salary = 35000;

} // end Person

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary)

{

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);

// set salary

salary = new_salary;

} // end Person int, char *, int

};

Now we have two constructors: one that takes no parameters, and one that takes three (an
int, a char *, and another int). Here’s an example of creating a person that is 24 years
old, lives at 500 Maple Street, and makes $52,000 a year.

Person person2(24,”500 Maple Street”, 52000);

Isn’t that the coolest? Of course, you might think you can initialize C structures as well
with a different syntax, something like

Person person = {24, “500 Maple Street”, 52000};

APPENDIX D C++ Primer1642

0672318350 AppD 5/14/03 10:00 AM Page 1642

However, what about the memory allocation? What about the string copying, and so on?
Straight C can do a blind copy, but that’s it. C++ gives you the power to also run code,
and logic when an object is created. This gives you much more control.

Writing a Destructor
After you have created an object, at some point it must die. This is where you might
normally call a cleanup function in C, but in C++, the object cleans itself up with a call to
its destructor. Writing a destructor is even simpler than writing a constructor because you
have much less flexibility with destructors—they only have one form:

~classname();

No parameter, no return type—period. No exceptions! With this in mind, let’s add a
destructor to our Person class:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void

Person()

{

age = 0; address = NULL; salary = 35000;

} // end Person

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary)

{

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);

Classes 1643
D

0672318350 AppD 5/14/03 10:00 AM Page 1643

// set salary

salary = new_salary;

} // end Person int, char *, int

// here’s our destructor

~Person()

{

free(address);

} // end ~Person

};

I’ve highlighted the destructor. Notice there is nothing special about the code within it; I
could have done anything that I wanted. With this new destructor, you don’t have to
worry about de-allocating memory. For example, in C, if you created a structure with
internal pointers in a function and then exited the function without de-allocating the
memory pointed to by the structure, that memory would be lost forever in never-never
land—that’s called a memory leak, as shown below with a C example:

struct

{

char *name;

char *ext;

} filename;

foo()

{

filename file; // here’s a filename

file.name = malloc(80);

file.ext = malloc(4);

} // end foo

The structure file is destroyed, but the 84 bytes we allocated are lost forever! But, in C++,
with your destructor, this won’t happen, because the compiler makes sure to call the
destructor for you, de-allocating the memory!

Those are the basics about constructors and destructors, but there’s a lot more. There are
special constructors called copy constructors, assignment constructors, and so forth. But
you have enough to get started. As for destructors, there’s just the type I have shown you,
so you’re in good shape there.

APPENDIX D C++ Primer1644

0672318350 AppD 5/14/03 10:00 AM Page 1644

The Scope Resolution Operator
There is a new operator in C++ called the scope resolution operator, represented by a double
colon (::). It’s used to make reference to class functions and data members at class scope.
Don’t worry too much about what that means—I’m just going to show you how to use it
to define class functions outside the class.

Writing Class Member Functions Outside the Class Scope
Thus far, you’ve been defining class member functions right inside the class definition.
Although this is totally acceptable for small classes, it gets to be a little problematic for
large classes. Hence, you are free to write class member functions outside of the class, as
long as you define them properly and let the compiler know that they are class functions
and not normal file-level functions. You do this with the scope resolution operator and
the following syntax:

return_type class_name::function_name(parm_list)

{

// function body

}

Of course, in the class itself you must still define the function with a prototype (minus the
scope resolution operator and class name, of course), but you can hold off on the body
until later. Let’s try this with our Person class and see what we get. Here’s the new class
with the function bodies removed:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

Person();

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary);

// here’s our destructor

~Person();

};

The Scope Resolution Operator 1645
D

0672318350 AppD 5/14/03 10:00 AM Page 1645

And here are the function bodies which you would place with all your other functions
after the class definition:

Person::Person()

{

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void

age = 0;

address = NULL;

salary = 35000;

} // end Person

///

Person::Person(int new_age,

char *new_address,

int new_salary)

{

// here’s our new more powerful constructor

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);

// set salary

salary = new_salary;

} // end Person int, char *, int

//

Person::~Person()

{

// here’s our destructor

free(address);

} // end ~Person

APPENDIX D C++ Primer1646

0672318350 AppD 5/14/03 10:00 AM Page 1646

TIP

Most programmers place a capital C before class names. I usually do, but I didn’t want to trip
you out. Thus, if I was programming, I probably would have called it CPerson instead of Person,
or perhaps CPERSON in all caps.

Function and Operator Overloading
The last topic I want to talk about is overloading, which comes in two flavors: function over-
loading and operator overloading. I don’t have time to explain operator overloading in
detail, but I’ll give you a general example. Imagine that you have our Vector3D class and
you want to add two vectors, v1 + v2, and store the sum in v3. You might do something
like this:

Vector3D v1 = {1,3,5},

v2 = {5,9,8},

v3 = {0,0,0};

// define an addition function, this could have

// been a class function

Vector3D Vector3D_Add(Vector3D v1, Vector3D v2)

{

Vector3D sum; // temporary used to hold sum

sum.x = v1.x+v2.x;

sum.y = v1.y+v2.y;

sum.z = v1.z+v2.z;

return(sum);

}// end Vector3D_Add

Then, to add the vectors with the function, you would write the following code:

v3 = Vector3D_Add(v1, v2);

This works, but it’s crude. With C++ and operator overloading, you can actually overload
the + operator and make a new version of it to add the vectors! So, you can write this:

v3 = v1+v2;

Cool, huh? The syntax of the overloaded operator function is below, so you can check it
out, but you’ll have to read a C++ book for the details:

Function and Operator Overloading 1647
D

0672318350 AppD 5/14/03 10:00 AM Page 1647

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void) {return(sqrt(x*x + y*y + z*z); }

// overloaded the + operator

Vector3D operator+(Vector3D &v2)

{

Vector3D sum; // temporary used to hold sum

sum.x = x+v2.x;

sum.y = y+v2.y;

sum.z = z+v2.z;

return(sum);

}

private:

int reference_count; // this is hidden

};

Notice that the first parameter is implicitly the object, so the parameter list has only v2.
Anyway, operator overloading is very powerful. With it, you can really create new data
types and operators, so that you can perform all kinds of cool operations without making
calls to functions.

You’ve already seen function overloading when I was talking about constructors. Function
overloading is nothing more than writing two or more functions that have the same name
but different parameter lists. Suppose you want to write a function called plot pixel that
has the following functionality: If you call it without parameters, it simply plots a pixel at
the current cursor position; if you call it with an x,y, it plots a pixel at the position x,y.
Here’s how you would code it:

int cursor_x, cursor_y; // global cursor position

// the first version of Plot_Pixel

void Plot_Pixel(void)

{

APPENDIX D C++ Primer1648

0672318350 AppD 5/14/03 10:00 AM Page 1648

// plot a pixel at the cursor position

plot(cursor_x, cursor_y);

}

////////////////////////////////

// the second version of Plot_Pixel

void Plot_Pixel(int x, int y)

{

// plot a pixel at the sent position and update

// cursor

plot(cursor_x=x, cursor_y=y);

}

Now you can call the functions like this:

Plot_Pixel(10,10); // calls version 2

Plot_Pixel(); // calls version 1

TIP

The compiler knows the difference, because the real name of the functions is created by not only
the function name, but also a mangled version of the parameter list, creating a unique name in
the compiler’s namespace.

Basic Templates
Templates have been around for a long time. In fact, you have probably used them or
even invented them by accident in your programming endeavors. Let’s start with a stan-
dard C example to illustrate what templates are and what problems they solve. Imagine
you have the following set of math functions:

int add(int a, int b)

{

int sum = a+b;

return(sum);

} // end add

int mul(int a, int b)

{

int product = a*b;

return(product);

} // end mul

Basic Templates 1649
D

0672318350 AppD 5/14/03 10:00 AM Page 1649

Well, that’s great, but what if you want to have the same functional support for floats?
Well, you could overload the functions like this:

float add(float a, float b)

{

float sum = a+b;

return(sum);

} // end add

float mul(float a, float b)

{

float product = a*b;

return(product);

} // end mul

But this gets to be tedious if you need to support more than a few data types. Additionally,
if you copy the code over and over and create overloaded functions, a single bug from
your “original” is copied multiple times, so it’s a source disaster. This is why templates
were invented: They are templates for a function (or class) that allow you to write the core
logic for a function using a generic data type, and then the compiler creates new versions
of the function on the fly as needed, so “write once” is the motto.

Here’s an example of declaring a templated function for our add() program:

template<class T> T add(T a, T b)

{

T sum; // declare the generic type

// perform generic computation

sum = a + b;

// return results

return(sum);

} // end add

Let’s analyze the function syntax carefully (I have bolded the tricky parts). To begin with,
template functions start with the template keyword, followed by the <class T> declara-
tion. T is just a dummy and could be anything. The template keyword tells the compiler
that we are beginning a template function, and the <class T> tag tells the compiler that
anytime it encounters the symbol T, it should replace it with whatever type is needed.
Therefore, T is the generic data type that the template function will use to generate multi-
ple functions. Next is the return value, which in this case also happens to be T. Thus, the
function returns a generic type back; however, it could have been an intrinsic type like
int, float, and so on. Following this is the function and parameter list. Notice that the
function takes two parameters of type T; again, these are also generic. Here’s an example:

int a = 1, b = 2;

int sum = add(a,b);

APPENDIX D C++ Primer1650

0672318350 AppD 5/14/03 10:00 AM Page 1650

The compiler will generate a template function that takes two ints and returns an int
with no help from us. Moreover, if you code the following lines

float a = 1, b = 2;

float sum = add(a,b);

the compiler will create yet another version of the template function that takes floats and
returns a float!

In addition to template functions, there are template classes, but I am going to leave that
up to you. For our needs, template functions are more than enough to help us generate
generic functions for multiple data types.

TIP

Recently there has been an addition to the ANSI C++ standard to support templates called the
STL, or Standard Template Library. STL has built-in support for numerous data types and
advanced functionality. Definitely something you should try, but even though it’s supposed to be
an ANSI standard—watch out!

Introduction to Exception Handling
Most C programmers either create very robust error-handling code or none at all. For
example, a rookie might try something like this:

char *alloc_mem(int num_bytes)

{

char *ptr = NULL;

ptr = (char *)malloc(num_bytes);

memset(ptr, 0, num_bytes);

return(ptr);

} // end alloc_mem

Of course, the problem with the function is that if malloc() fails, a NULL pointer is
returned. Worse yet, num_bytes of memory is overwritten, and a protection fault occurs! A
more robust implementation would be:

char *alloc_mem(int num_bytes)

{

char *ptr = NULL;

if ((ptr = (char *)malloc(num_bytes))!=NULL)

{

memset(ptr, 0, num_bytes);

return(ptr);

Introduction to Exception Handling 1651
D

0672318350 AppD 5/14/03 10:00 AM Page 1651

} // end if

return(NULL);

} // end alloc_mem

In this version of the function, if the memory can’t be allocated, the memory is zeroed
out. Moreover, the function returns NULL to indicate that something went wrong. These
techniques, along with error files, printf(), and other tactics, all work fine. However, the
problem that many C programmers face is that their error handling tends to get inter-
twined with their logic. This can become rather cumbersome. Additionally, recovering
from an error at all levels of functional nesting might become complex. Alas, new error-
handling facilities have been added to C++, called exception handling.

The Components of Exception Handling
Exception handling consists of three main components:

• Try blocks—These sections of code are where you want to “try” to detect an error. To
delineate a try block, you simply enclose in with the try keyword followed by braces
to enclose the block, as follows:

try {

// code to try goes here

} // end try block

• Catch blocks—Catch blocks are the fielders for the try blocks—anything that is tried
is “caught” by a catch block. Catch blocks are started with the catch keyword and a
variable declaration of the type of information that is going to be sent, followed by
braces to enclose the block, as follows:

catch(type v) {

// error handling code for the try block goes here

// this catch will handle data of the class “type”

} // end catch block

• Throw statements—Last but not least are the throw statements. These are the actual
lines of code that initiate the error handling (throw the error, to keep the analogy
going). In other words, when the code logic detects an error, it throws the error to
the nearest catch block from the current try block. In essence, program flow immedi-
ately jumps to the catch block. Throw statements can throw any type of data—
strings, ints, floats, classes, and so on. The syntax is

throw(type v);

APPENDIX D C++ Primer1652

0672318350 AppD 5/14/03 10:00 AM Page 1652

Let’s try a simple example with all three components:

try {

// do an error prone calculation..

// error occurred! throw it

throw(“there was an error in the calculation module”);

} // end try

// the catch block MUST be directly below the try block

catch(const char *str) {

// take action!

printf(“\nError Thrown: %s”, str);

} // end catch block

In this example, we have the simple structure of first the try block, then the catch block,
and then the throw statement throwing a string variable, or more specifically, a const
char *. That’s why the catch block has the type declared as a const char *. However,
there is no reason why we can’t throw and catch multiple data types, as in this example:

try {

// do an error prone calculation..

// has bad thing 1 occurred? throw it

if (bad_thing1)

throw(“there was an error in the calculation module”);

// bad thing 2

if (bad_thing2)

throw(12);

} // end try

// the catch blocks MUST be directly below the try block

catch(const char *strerror) {

// take action for string throws

printf(“\nError Thrown: %s”, strerror);

} // end catch block

catch(int ierror) {

// take action for integer throws

printf(“\nError Thrown, Code: %d”, ierror);

} // end catch block

In the above example, we have one try block, but two possible errors; one throws a string,
and one throws an integer. This is no problem—we simply need a catch block that can
take a string or integer.

Introduction to Exception Handling 1653
D

0672318350 AppD 5/14/03 10:00 AM Page 1653

The last feature of exception handling I want to mention is that exceptions can occur in
functions as function calls. For example, look at the code below:

void func(void)

{

// bad things happen here!

switch(rand()%3)

{

case 0: // string bad thing

throw(“Something went wrong with the text!”);

break;

case 1: integer bad thing

throw(1);

break;

case 2: floating point bad thing

throw(0.5);

break;

default: // all bad things!

} // end switch

} // end func

void main(void)

{

try {

// call our worker function WITHIN the try block

func();

} // end try

// the catch blocks MUST be directly below the try block

catch(const char *strerror) {

// take action for string throws

printf(“\nError Thrown: %s”, strerror);

} // end catch block

catch(int ierror) {

// take action for integer throws

printf(“\nError Thrown, Integer Code: %d”, ierror);

} // end catch block

catch(int ferror) {

// take action for float throws

APPENDIX D C++ Primer1654

0672318350 AppD 5/14/03 10:00 AM Page 1654

printf(“\nError Thrown, Floating Code: %d”, ferror);

} // end catch block

catch(…) {

// any other error goes here

} // end catch all

} // end main

TIP

Notice the catch(...) statement. This is called the catch all statement. Anything that doesn’t
have an explicit catch() block will end up here.

Referring to the code listing, the function func() is called from main() within a try block;
therefore, anything that happens within that try block will be caught.

Obviously, exception handling has a lot more functionality than what’s shown here, but
this is start. Here are some quick rules to code by:

• Don’t use exception handling on small projects.

• Don’t add exception handling to a code base that doesn’t have it already. That is, a
heterogeneous error-handling system isn’t a good idea.

• If you already have a robust error-handling system, there’s no need to recode it with
exception handling.

• Exception handling works best when it helps separate logic and error handling. In
fact, this is its strength.

Summary
Well, that’s it for my crash course in C++. You might not be a C++ coder now, but you
have a good idea of what the language adds to the C repertoire of functionality. If you’re
interested in learning more, here’s the URL of the free online book, Thinking in C++ 2nd
Edition, by Bruce Eckel:

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

It’s all about the free stuff!

Summary 1655
D

0672318350 AppD 5/14/03 10:00 AM Page 1655

0672318350 AppD 5/14/03 10:00 AM Page 1656

